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Abstract
In this paper, we present the USTC FLICAR Dataset, which is dedicated to the development of simultaneous localization
and mapping and precise 3D reconstruction of the workspace for heavy-duty autonomous aerial work robots. In recent
years, numerous public datasets have played significant roles in the advancement of autonomous cars and unmanned
aerial vehicles (UAVs). However, these two platforms differ from aerial work robots: UAVs are limited in their payload
capacity, while cars are restricted to two-dimensional movements. To fill this gap, we create the “Giraffe” mapping
robot based on a bucket truck, which is equipped with a variety of well-calibrated and synchronized sensors: four 3D
LiDARs, two stereo cameras, two monocular cameras, Inertial Measurement Units (IMUs), and a GNSS/INS system.
A laser tracker is used to record the millimeter-level ground truth positions. We also make its ground twin, the “Okapi”
mapping robot, to gather data for comparison. The proposed dataset extends the typical autonomous driving sensing
suite to aerial scenes, demonstrating the potential of combining autonomous driving perception systems with bucket
trucks to create a versatile autonomous aerial working platform. Moreover, based on the Segment Anything Model
(SAM), we produce the Semantic FLICAR dataset, which provides fine-grained semantic segmentation annotations
for multimodal continuous data in both temporal and spatial dimensions. The dataset is available for download at:
https://ustc-flicar.github.io/.
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1 Introduction
Aerial work is crucial in both daily life and industrial
or agricultural production, as illustrated in Figure 1.
Despite its significance, the low efficiency and high risks,
including complicated workflow, falling from high places,
electrocution from overhead power lines, and being trapped
or squeezed, lead to numerous worker injuries or fatalities
each year. Replacing workers with robots in dangerous aerial
work environments can greatly enhance efficiency and safety,
and potentially save lives.

1.1 Motivation and Challenges
In August 2003, a massive blackout (Northeast Blackout
of 2003) hit parts of the Northeastern and Midwestern
United States and Ontario, Canada. The outage affected
approximately 55 million people, caused $25-30 billion in
economic losses, and caused nearly 100 people’s death. And
it all started with just a tree branch falling on a power line
in Ohio, and the incorrect handling triggered a huge chain
reaction.

As evident from the Northeast Blackout incident, it is
crucial to address the challenges faced by the power grid to
ensure a reliable and uninterrupted electricity supply. One
solution that holds immense potential is the utilization of

autonomous aerial work robots for performing maintenance
and inspection tasks in the power grid.

What tasks would an aerial work robot system face
when working in the power grid environment? And what
challenges do these tasks reflect in terms of aerial work
autonomy?

Some typical accidents in the power grid scenario are
shown in Figure 2, such as tree branches falling onto power
lines and power line blowing, which can pose a risk of power
outages. Additionally, dirty insulators and tilted insulators
can cause a decline in insulation performance, leading to
power overload.

Therefore, starting with the tasks of aerial work robots
in the power grid environment, which include inspection
of power lines and equipment, identification, and removal
of vegetation encroachments, reconnection of interrupted

University of Science and Technology of China, 96 Jinzhai Road, Hefei,
230026, Anhui, China.

Corresponding author:
Erbao Dong, CAS Key Laboratory of Mechanical Behavior and
Design of Materials, Department of Precision Machinery and Precision
Instrumentation, University of Science and Technology of China, 96
Jinzhai Road, Hefei, Anhui Province,230026, China.
Email: {zimingwang, lyj0910, dyf0202, starlet, zxrr}@mail.ustc.edu.cn,
{jianmin, ebdong*, yanyongz}@ustc.edu.cn

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

https://orcid.org/0000-0003-0499-6848
https://orcid.org/0000-0002-1515-0402
https://orcid.org/0000-0002-4062-9730
https://orcid.org/0000-0001-9046-798X
https://ustc-flicar.github.io/


2 Journal Title XX(X)

Figure 1. Typical aerial work scenes:
(a) repair and maintenance of electrical power facilities, (b)
machinery manufacturing, (c) ship maintenance, (d) building
construction,(e) tree trimming, and (f) aerial fire fighting and
rescue

Figure 2. Typical power grid accidents:
(a) tree branch falling on the power line, (b) power line blown,
(c) insulator contamination, (d) insulator tilt

transmission lines, and replacement of dirty or tilted
insulators, etc. The significant challenge that these robots
must overcome is how to effectively perceive and interact
with the complex aerial work environment.

In order to navigate and perform tasks in this environment,
aerial robots require accurate and real-time localization, as
well as comprehensive 3D perception and reconstruction
capabilities through their visual and inertial systems. These
capabilities are crucial for tasks such as object recognition,
trajectory planning and control, and scene understanding.
However, the aerial work environment and tasks present
specific challenges for visual and sensors fusion localization
and mapping.

The presence of small-sized objects like tree branches,
power lines, and trusses, combined with a lack of texture,
makes their detection and reconstruction difficult. Unlike
structured scenes such as warehouses or traffic, the aerial
work environment is often cluttered and unstructured,
making it challenging to rely on general structured features
to improve algorithm performance. Furthermore, the aerial

Figure 3. Aerial work robot for power grid tasks, equipped with
two UR5 collaborative robot arms, lift into the air by bucket
truck, developed by our lab.

environment can be sparser than ground environments,
making visual or LiDAR SLAM (Simultaneous Localization
and Mapping) more challenging due to matching and
loopback detection difficulties. Besides, with their increased
degrees of freedom and exposure to sudden changes in
motion, aerial work robots face challenges related to
complex motion and attitude estimation.

Additionally, aerial work robots encounter similar
difficulties as other outdoor robots, such as coping with
a wide range of lighting conditions in different weather
conditions. Direct sunlight or darkness at night can cause
vision sensors to fail. To help overcome these challenges,
the development of robust algorithms and the availability of
appropriate datasets are crucial for advancing the capabilities
of aerial work robots in the power grid environment. This is
the motivation for us to make the USTC FLICAR dataset

1.2 Public Dataset
Public datasets play a critical role in the implementation
of autonomous systems in new scenarios. They provide a
standard benchmark for evaluating algorithms, allowing for
the quick investigation, verification, and development of
algorithms without the need for expensive hardware, compli-
cated calibration, and time-consuming data preparation. This
section will review relevant datasets to the USTC FLICAR,
which can be divided into two categories: ground and aerial.
The details are summarized in Table 1.

Ground scenarios, such as autonomous driving, have made
significant progress in the past decade, partly due to the
availability of diverse public datasets, such as the well-
known KITTI dataset Geiger et al. [2013]. These datasets
are remarkable for the abundance of sensors that can be
incorporated because of the load-carrying capacity and space
of ground vehicles. Ground scenarios rely on RTK-GPS
or LiDAR SLAM for localization and mapping tasks, and
generate ground truth values with centimeter-level accuracy.

Aerial autonomous systems have also progressed in recent
years. The EuRoC dataset Burri et al. [2016] was the first
to equip UAVs with synchronously triggered high frame rate
stereo cameras and IMUs, enabling a tightly coupled visual-
inertial system for aerial robot localization and attitude
estimation. The most commonly used platform for aerial
data collection is micro or small drones, which are usually
equipped with a few cameras and inertial sensors due
to payload constraints. In indoor or small scenes, motion
capture systems are used to generate millimeter-level ground
truth, while in outdoor or larger scenes, laser trackers are
used.
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However, it can be seen that there is a gap between
ground and aerial datasets. The ground dataset comprises a
large scene with rich sensors and provides centimeter-level
accuracy for 2D motion ground truth. In contrast, the aerial
dataset represents a smaller scene with limited sensors and
offers millimeter-level accuracy for 3D motion ground truth.
What if we combine the strengths of EuRoC and KITTI to
create a new aerial dataset that incorporates both rich sensors
and millimeter-level accuracy for 3D motion ground truth?
This is where the USTC FLICAR dataset comes into play,
bringing together the best aspects of both ground and aerial
datasets.

Having rich sensors and highly accurate ground truth is
essential for autonomous aerial working robots and systems.
In the complex and unstructured aerial work environment,
robots must be equipped with multiple complementary
sensors to gather multi-modal data for perception. Moreover,
as robots are expected to perform more precise tasks, such as
precise interaction and manipulation of objects, millimeter-
level accuracy ground truth becomes even more important.

1.3 Related Works: Bridge Ground-Aerial Gap
In the previous section, we compared two of the most
prominent datasets in the ground and aerial domains: KITTI
and EuRoC. We identified the gap between these datasets and
proposed the creation of a new aerial dataset that features rich
sensor data and 3D motion ground truth with millimeter-level
accuracy. To achieve this goal, there are two options: adding
sensors to a drone with a larger payload or enabling a car to
“fly” for 3D movement.

The NTU VIRAL dataset Nguyen et al. [2022] chose the
first option by equipping a larger UAV with two Ouster
16-beam 3D LiDARs, two cameras, and an IMU. It is the
pioneer in applying LiDARs to drone scenarios.

The second option, which may seem like a fantasy, is the
approach taken in the USTC FLICAR dataset. The USTC
FLICAR dataset plans to extend the typical autonomous
driving sensor suite to aerial scenes, with a large multi-
sensor platform that includes four LiDARs (one Ouster
128-beam, two Velodyne 32-beam, one MEMS LiDAR),
seven cameras (two stereo pairs), and three IMUs/INS. If
we choose the first option like NTU VIRAL, only a few
very expensive large drones, similar in size to helicopters,
may have enough carrying capacity. However, it is nearly
impossible and highly dangerous to fly such large aircraft
equipped with a working robot at ultra-low altitudes (below
50m) in cities for aerial operations and data collection, due
to current regulations and safety concerns. Luckily, we found
the bucket truck.

A Bucket truck is a type of construction machinery
with a high retention rate and is widely used in aerial
work. The large pieces of machinery in various aerial work
scenarios in Figure 1 are bucket trucks. They are heavy-duty
construction vehicles equipped with an extendable hydraulic
arm that carries a large bucket to elevate workers to elevated
or inaccessible areas. These trucks have a strong payload
capacity of around 200kg and can reach any target position in
their 3D workspace through arm extension and joint rotation.
With the help of a bucket truck, it is feasible to allow a heavy
multi-sensor perception platform for autonomous driving to
perform flexible 3D motion within a certain range in the air.

With current technology, we cannot make a car fly, but we
can start by making its sensing part fly.

When designing the sensor suite, we aimed to keep it as
similar as possible to existing autonomous driving datasets.
For example, our Bumblebee stereo camera is the same
as those used in the Oxford RobotCar Maddern et al.
[2017] and EU Long-term Yan et al. [2020] datasets. Our
Velodyne HDL-32E horizontal 3D LiDAR is also the same
as those used in the nuScenes Caesar et al. [2020], Oxford
Radar RobotCar Barnes et al. [2019], EU Long-term, and
NCLT Carlevaris et al. [2016] datasets. This makes it more
convincing to compare algorithms using the same hardware
between these datasets and the USTC FLICAR dataset.
The USTC FLICAR dataset also shares similarities with
existing aerial datasets but is geared toward more delicate
and heavy-duty tasks. Millimeter-level outdoor ground truth
was obtained using a laser tracker.

Looking back at Table 1, it is clear that USTC FLICAR
has the most sensors among all aerial datasets. We believe
that our dataset is a significant contribution that provides
benchmarks for testing existing algorithms for autonomous
systems and developing new ones that are more suited to the
particularities of aerial work scenes.

In addition, the USTC FLICAR dataset and experiments
will demonstrate that the innovative combination of
an autonomous driving sensing suite and a bucket
truck results in a versatile autonomous aerial platform
with significant potential. This platform has exceptional
perception capabilities that are comparable to those of self-
driving cars and can be further equipped with a variety of
working tools, such as robotic arms, to effectively carry out
diverse and heavy-duty aerial working tasks. A combined
prototype of the platform is illustrated in Figure 3.

1.4 Paper Roadmap
The remaining parts of the paper are organized as follows:
In Section 2, we provide a detailed description of the various
components of the data acquisition systems, as well as the
parameters, characteristics, and functions of each sensor.
Section 3 outlines the specific content of the dataset, the
format of data storage, and the methods for accessing the
data. Section 4 discusses the time synchronization, intrinsic
and extrinsic calibration of sensors, and the generation of
ground truth. We also present an evaluation of some state-
of-the-art SLAM algorithms on the dataset as baselines
and analyze the results in Section 5. Finally, Section 7
summarizes the paper and discusses future work.

2 Acquisition Systems and Sensor Setup

The data was acquired using two different systems, the
“Giraffe” and “Okapi” systems, as depicted in Figure 4. The
“Giraffe” system is an aerial platform consisting of a multi-
sensor data collection platform (a), a laser tracker ground
truth system (b), and a bucket truck (c). On the other hand,
the “Okapi” system is a ground-based system similar to an
autonomous vehicle, equipped with the same sensors (a)
and a ground truth recording system (b), and mounted on
a ground robot (d) for the acquisition of ground-level data
for comparison with the data collected by the aerial system.
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Table 1. Summary and comparison of notable public datasets for ground and aerial autonomous systems.

Sensors

Dataset IMU Camera LiDAR Gruond Truth Environment Platform

MIT DARPA
Huang et al. [2010]

N/A
5 PointGrey Firefly MV:
376×240×4/752×480

3D Velodyne HDL-64E
2D SICK LMS 291-S05
×12

RTK GPS/INS
Outdoor
(Urban)

Car

Ford Campus
Pandey et al. [2011]

6 axis Xsens
MTi-G

PointGrey LadyBug 3:
1600×600×6

3D Velodyne HDL-64E
2D Riegl LMS×2

RTK GPS/INS
Outdoor
(Urban)

Car

KITTI
Geiger et al. [2013]

6 axis OXTS
RT3003

4 PointGrey FL2-14S3M/C-C :
1392×512×4

Velodyne HDL-64E RTK GPS/INS
Outdoor
(Urban)

Car

NCLT
Carlevaris et al. [2016]

9 axis
3DM-GX3-45

PointGrey LadyBug 3:
1600×1200×6

3D Velodyne HDL-64E
2D Hokuyo×2

RTK GPS/
LiDAR SLAM

Outdoor
(Campus)

Ground
Robot

Oxford RobotCar
Maddern et al. [2017]

6 axis NovAtel
SPAN-CPT ALIGN

PointGrey Bumblebee XB3:
1280×960×3
3 Point Grey Grasshopper2:
1024×1024

2D SICK LMS-151×2
3D SICK LD-MRS

RTK GPS/INS
Outdoor
(Urban)

Car

Oxford Radar
RobotCar
Barnes et al. [2019]

6 axis NovAtel
SPAN-CPT ALIGN

PointGrey Bumblebee XB3:
1280×960×3
3 PointGrey Grasshopper2:
1024×1024×3

3D Velodyne HDL-32E
×2

RTK GPS/INS
Outdoor
(Urban)

Car

Rosario
Pire et al. [2019]

6 axis LSM6DS0
ZED stereo:
672×376×2

N/A RTK GPS/INS
Outdoor
(Agriculture)

Ground
Robot

KAIST Urban
Jeong et al. [2019]

9 axis Xsens
MTi-G-300

FLIR FL3-U3-20E4C-C:
1280×560×2

3D Velodyne VLP-16C
×2

SLAM
Outdoor
(Urban)

Car

EU Long-term
Yan et al. [2020]

9 axis Xsens
MTi-28A53G25

PointGrey Bumblebee XB2/3
2 Pixelink PL-B742F

3D Velodyne HDL-32E×2
2D SICK LMS

RTK-GPS
Outdoor
(Urban)

Car

nuScenes
Caesar et al. [2020]

9 axis Advanced
Navigation Spatial

6 Basler acA1600-60gc:
1600×1200×6

3D Velodyne HDL-32E RTK GPS/INS
Outdoor
(Urban)

Car

EuRoC
Burri et al. [2016]

6 axis ADIS16448 2 MT9V034: 752×480×2 N/A
6DOF MoCap
3D Laser Tracker

Indoor UAV

Zurich Urban
Majdik et al. [2017]

6 axis on PX4
autopilot board

GoPro Hero 4: 1920×1080 N/A
Aerial-
Photogrammetry
Visual SLAM

Outdoor
(Urban)

UAV

UZH-FPV
Delmerico et al. [2019]

6 axis IMU integrated
with the camera

Snapdragon Fisheye Stereo:
640×480×2
mDAVIS Event: 346×260

N/A 3D Laser Tracker
Indoor
Outdoor

UAV

NTU VIRAL
Nguyen et al. [2022]

9 axis VectorNav
VN100

2 uEye 1221 LE:
752×480×2

3D Ouster OS1-16×2 3D Laser Tracker
Outdoor
(Campus)

UAV

USTC FLICAR
9 axis Xsens
MTi-G-710

PointGrey Bumblebee XB3:
1280×960×3
PointGrey Bumblebee XB2:
1024×768×2
Hikvision MV-CB016-10GC
1440×1080
Hikvision MV-CE060-10UC
3072×2048

3D Velodyne HDL-32E
3D Velodyne VLP-32C
3D Ouster OS0-128
3D LiVOX Avia

3D Laser Tracker
Outdoor
(Urban/
Aerial)

Bucket
Truck/
Ground
Robot

Figure 4. “Giraffe” and “Okapi” acquisition systems:
“Giraffe” aerial system: (a), (b) and (c).
“Okapi” ground system: (a), (b) and (d)
(a) multi-sensor data collection platform (Fig. 5), (b) laser
tracker ground truth system, (c) bucket truck, (d) ground robot.

Section 2 will provide more detailed information about the
components of the data acquisition systems.

Both Systems are equipped with the following sensors:

2.1 Inertial Measurement Unit (IMU)
The main IMU in the acquisition system is an Xsens MTi-
G-710 INS/GNSS module, which is installed at the center of
the system. The body frame is aligned with the Xsens sensor
frame.

• 1 × Xsens MTi-G-710 INS/GNSS, 9-axis, 400 Hz,
accuracy: 0.2◦ in roll/pitch, 0.8◦ in heading.

The Xsens module outputs the three-axis acceleration and
three-axis angular velocity in its own coordinate system,
as well as the quaternion attitude in the North-East-Down
(NED) coordinate system. The Xsens module is hardware-
synchronized to the same extrinsic GPS clock source with the
cameras and LiDARs in the system, forming visual-inertial
and LiDAR-inertial sensor units together. In addition, two
extra 6-axis IMUs are installed in the OS0-128 LiDAR and
LiVOX Avia LiDAR, forming part of the LiDAR-Inertial
sensor unit.

2.2 3D LiDARs
A LiDAR (Light Detection and Ranging) is a remote sensing
method that uses light in the form of a pulsed laser to
measure distances to objects and create a 3D map of the
environment. LiDARs are essential for autonomous systems
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Figure 5. Sensor setup on a multi-sensor platform. The coordinate system shows the origin and orientation of each sensor
mounted on the vehicle, with the following convention: X (red), Y (green), and Z (blue). Note that Velodyne LiDAR has two different
coordinate system conventions. The coordinate system in the product manual is: Y: forward X: right Z: up; and the default
coordinate system of the Velodyne ROS package is: X: forward Y: left Z: up. Here shows the second coordinate system of the ROS
package. The number of the sensor in the figure corresponds to Table 2.

Figure 6. The visual scope of the acquisition system sensors, top view, and side view.

to accurately perceive and understand 3D scenes. The system
in this work includes four different LiDARs: one digital
LiDAR, two mechanical LiDARs, and one MEMS LiDAR.

• Digital LiDAR: 1 × Ouster OS0-128, 10 Hz, 128 beams,
0.7◦ angular resolution, ± 1.5 to ± 5 cm distance accuracy,
collecting 2.62 million points/second, field of view: 360◦

HFoV, 90◦ VFoV (±45◦), range:50 m

• Mechanical LiDAR: 1 × Velodyne HDL-32E, 5/10
Hz, 32 beams, 1.33◦ angular resolution, ± 2 cm distance
accuracy, collecting 1.39 million points/second, the field

of view: 360◦ HFoV, 41.3◦ VFoV (+10.67◦ to −30.67◦),
range: 100 m

• Mechanical LiDAR: 1 × Velodyne VLP-32C, 10 Hz, 32
beams, 0.33◦ angular resolution (non-linear distribution), ±3
cm distance accuracy, collecting 1.20 million points/second,
the field of view: 360◦ HFoV, 40◦ VFoV (−25◦ to +15◦),
range: 200 m

• MEMS LiDAR: 1 × DJI LiVOX Avia, 10 Hz, 2 cm
distance accuracy, collecting 0.24 million points/second, the
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Figure 7. Images of several typical data acquisition sites. Left: HF0XX sites, Right: HN0XX sites.

field of view: 70.4◦ HFoV, 77.2◦ VFoV (Non-repetitive
Scanning), range: 450 m

The system uses Ouster OS0-128 and Velodyne HDL-
32E LiDARs as the main source of 3D environmental data,
and Velodyne VLP-32C and DJI LiVOX Avia LiDARs to
supplement the blind areas of vision. The Ouster OS0-128
is a digital LiDAR based on custom system-on-a-chip with
single-photon avalanche diode detectors, which can output
point clouds, depth images, and signal-intensity images
of LiDAR and visible light spectrum (Figure 11 (c),(d)).
Velodyne HDL-32E has the highest point cloud accuracy,
while Velodyne VLP-32C and DJI LiVOX Avia LiDARs are
mounted vertically and horizontally, respectively, to provide
a 360-degree view in both horizontal and vertical directions.
The point clouds from LiVOX LiDAR scans are uniformly
accumulated on the map over time.

2.3 Monocular and Stereo Cameras
Cameras are an important part of autonomous system
perception, as they capture high-resolution images of
the surrounding environment, providing information about
object shape, color, texture, and motion direction. And
stereo cameras can effectively recover depth. We equipped
the sensor platform with several cameras, including stereo
cameras and monocular cameras:

• 1 x Point Grey Bumblebee XB3 (BBX3-13S2C-38)
trinocular stereo camera, 1280 × 960 × 3, 10Hz, Sony
ICX445 CCD, 1/3”, 3.75 µm, global shutter, 3.8mm lens,
66◦ HFoV, 12/24cm baseline, IEEE 1394B, 54 dB Signal To
Noise Ratio (SNR).

• 1 x Point Grey Bumblebee XB2 (BBX2-08S2C-38)
binocular stereo camera, 1024 x 768 × 2, 10-15Hz, Sony
ICX204 CCD, 1/3”, 4.65 µm, global shutter, 3.8mm lens, 70◦

HFoV, 12cm baseline, IEEE 1394A, 60 dB SNR.

• 1 x Hikvision MV-CB016-10GC-C industrial monocular
camera, 1440 × 1080, 20Hz, Sony IMX296 CCD, 1/2.9”,
3.45 µm, global shutter, 6mm lens (MVL-HF0628M-6MPE),
63.11◦ HFoV, GigE, 41 dB SNR.

• 1 x Hikvision MV-CE060-10UC industrial monocular
camera, 3072 × 2048, 20Hz, Sony IMX178 CCD, 1/1.8”, 2.4
µm, global shutter, 6mm lens (MVL-HF0628M-6MP), 49.3◦

HFoV, USB 3.0, 41.3 dB SNR.
Stereo cameras use two or more cameras to capture the

same scene from different viewpoints, allowing the system
to estimate depth information. On the other hand, monocular
cameras use a single camera and rely on other techniques
like motion parallax and perspective to estimate depth. Both
types of cameras have their advantages and disadvantages,
and their usage depends on the specific application and
requirements.

2.4 Laser Tracker
A laser tracker is a high-precision instrument used to
accurately measure the position and orientation of objects in
3D space. It works by emitting a laser beam and tracking
a target that reflects the laser light back to the tracker. The
laser tracker measures the time it takes for the laser beam
to travel to the target and back and uses this information to
calculate the position and orientation of the target. The API
T3 laser tracker we use is fixed horizontally on the ground
and is the only sensor that is independent of the multi-sensor
platform, as shown in Figure 4 (b). During the motion of
the sensor platform, the laser tracker tracks the active target
ball that is rigidly fixed on the platform body and outputs the
three-dimensional space coordinates of the target point with
millimeter precision in its own coordinate system.

• API T3 Laser Tracker, 50Hz, azimuth: ± 320◦ (640◦

end to end), angular resolution: ± 0.018 arc-seconds,
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Figure 8. The joint action of the hydraulic arm of the bucket
truck corresponds to the movement trajectory of the end sensor
platform, taking the hf003 sequence as an example.

Figure 9. Representative aerial and ground trajectories in the
dataset.

angular accuracy: 3.5 µm/meter, system resolution: 0.1
µm, maximum lateral target speed: 4 meters/sec, maximum
acceleration: 2 g, internal level accuracy: ± 2 arc-second,
linear range: 80 m.

3 Dataset
As shown in Figure 7, representative scenes of aerial work
were selected to collect data. The surrounding objects
include buildings, trees, power lines, roads, etc. At the same
time, we collected data from morning to night and under
different weather conditions, in order to ensure that the
aerial work robot can work around the clock. All data is
available here: https://ustc-flicar.github.io/
datasets/.

Figure 10. Dataset file structure.

The sensor platform completes various aerial motions
through bucket truck, including movement in XYZ direction
and large range rotations. Figure 8 shows one of these
trajectories and the corresponding bucket truck movement,
providing an intuitive explanation of how the motion
trajectories in the dataset were generated.

To get an impression of the trajectories, some of the flight
paths are shown in Figure 9. These paths were provided by
an API T3 laser tracker and recorded on the base station
as ground truth position measurements. The laser tracker
measurements can be found under the Tracker folder in
the file position.txt. A short summary of the paths
is given in Table 4. The measurement data from the 9-
axis Xsens IMU/INS is stored in the imu folder. The
file accelerometer.txt contains acceleration data and
gyroscope.txt contains angular velocity data, both in
the IMU frame I . The file quaternion.txt contains
attitude data in the world frame W . To facilitate the use
of the dataset, we have provided the optimal estimate of
the full pose ∈ R3 ×H (both position and attitude) in
the body frame B as ground truth based on the original
measurement. More details about the generation of ground
truth can be found in section 4.8. The ground truth data
is provided under the ground truth folder in the file
GT HF0XX.txt in TUM format Sturm et al. [2012]
<timestamp,x,y,z,qx,qy,qz,qw>.

The storage format of camera and LiDAR data in our
dataset refers to the KITTI dataset. Images are stored with
lossless compression using 8-bit PNG files. When collecting
data, we only record the original images in Bayer format
and do not perform parsing, compression, or filtering (such
as Bayer demosaicing) in order to preserve the original
information of the data to the greatest extent and improve
data utility. For example, as shown in Figure 11 (a), the three
views from the left, center, and right camera of Bumblebee-
XB3 are encoded in the red, green, and blue channels,
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Table 2. The sensor model specifications and data information in this dataset.

No Sensor Model ROS Topic Message type Rate

1 IMU/INS Xsens MTi-G-710 /imu/data sensor msgs/Imu 400Hz

2 Horizontal LiDAR 1 Velodyne HDL-32E /velodyne points HDL32 sensor msgs/PointCloud2
5/10Hz
(rotate at 10Hz)

3 Horizontal LiDAR 2 Ouster OS0-128

/os cloud node/imu
/os cloud node/points
/img node/reflect image
/img node/signal image

sensor msgs/Imu
sensor msgs/PointCloud2
sensor msgs/Image
sensor msgs/Image

100Hz
10Hz
10Hz
10Hz

4 Horizontal LiDAR 3 LiVOX Avia
/livox/lidar
/livox/imu

livox ros driver/CustomMsg
sensor msgs/Imu

10Hz
200Hz

5 Vertical LiDAR 1 Velodyne VLP-32C /velodyne points VLP32 sensor msgs/PointCloud2 10Hz

6 Stereo Camera front PointGrey Bumblebee xb3
/camera/left/image raw
/camera/center/image raw
/camera/right/image raw

sensor msgs/Image
10-16Hz
10-16Hz
10-16Hz

7 Stereo Camera back PointGrey Bumblebee xb2
/cam xb2/left/image raw
/cam xb2/right/image raw

sensor msgs/Image
10-20 Hz
10-20 Hz

8 Mono Camera 1 Hikvision MV-CB016-10GC-C /hik camera/iamge raw sensor msgs/Image 20Hz

9 Mono Camera 2 Hikvision MV-CE060-10UC /right camera/iamge sensor msgs/Image 20Hz

Table 3. Data sequences details and summary

Sequence Time Length (m) Duration (s) Size (GB) Characteristic Summary

HF001 2022-06-08 15:35 26.46 192 66.5 sun, semantic Conducting data collection in a
representative aerial work environment
on the urban roadside, surrounding
objects include utility poles, trees,
buildings, etc. The collection
environment involves significant lighting
variations from daytime to dusk to nighttime.
Additionally, the keyframes in the data are
annotated with semantic segmentation.
HF001-HF009 are the main sequences
in this dataset.

HF002 2022-06-08 15:48 33.50 217 75.7 sun, semantic
HF003 2022-06-08 16:14 34.26 217 83.2 sun, rotation, semantic
HF004 2022-06-08 16:30 24.10 155 82.0 sun, semantic
HF005 2022-06-08 17:20 22.82 260 90.3 sun, semantic
HF006 2022-06-08 18:13 33.90 230 86.3 clouds, semantic
HF007 2022-06-08 19:01 34.32 207 67.5 dusk, rotation,semantic
HF008 2022-06-08 21:20 30.78 210 91.3 night, rotation, semantic
HF009 2022-06-08 21:27 35.42 238 101.3 night, rotation, semantic

HF010 2022-06-07 18:19 16.06 210 91.7 clouds Additional Sequences Group I:
Data collection environment same to the
main sequence, except for the existing sensors,
an extra down-looking camera mounted
with a vertical lidar Velodyne VLP32 access-
ible via ROS topic “/down camera/image”

HF011 2022-06-07 19:13 17.81 207 25.5 dusk
HF012 2022-06-07 19:26 26.15 231 121.1 dusk
HF013 2022-06-07 20:40 26.25 187 100.9 night
HF014 2022-06-07 20:54 25.57 201 119.2 night

HN001 2023-04-07 15:53 38.44 390 79.2 sun, rotation, semantic Additional Sequences Group II:
Collecting data in a new parking lot environment,
which includes not only buildings, poles
and trees but also numerous vehicles.
An extra FLIR ADK infrared camera is installed,
and it can be accessed via the ROS topic
“/flir boson/image raw”.
Bumblebee XB3 and LiVOX are offline.

HN002 2023-04-07 12:12 44.97 395 56.1 sun, rotation, semantic
HN003 2023-04-07 12:23 38.64 442 62.2 sun, rotation
HN004 2023-04-07 13:02 42.50 417 59.1 sun, rotation

GR001 2022-06-15 15:50 46.51 333 35.9 sun, turn Additional Sequences Group III:
Collecting ground data using multi-sensor platform
mounted on a Husky chassis. The data collection
involves capturing different motion patterns
compared to aerial scenarios, such as 2D movements,
turns, etc. Bumblebee XB3 and Ouster are offline.

GR002 2022-06-15 19:19 66.89 116 12.1 dusk, turn
GR003 2022-06-15 19:24 40.59 190 19.5 dusk, turn
GR004 2022-06-15 19:34 69.16 211 25.7 dusk, turn

respectively, and logged to the disk as one Bayer format
image. We perform operations such as view separation and
Bayer demosaicing offline for the raw image, which strictly
guarantees the timestamp and brightness consistency of
stereo camera images because they were logged to the disk at
exactly the same time in one image. Images of each view are
provided separately in the left/center/right folder
under the xb3 folder.

The LiDAR scans are stored as PCD files which save
the (x,y,z) coordinate of the point cloud. If you want to use

additional information of LiDAR scans such as reflection
intensity intensity, scanning lines ring corresponding to point
cloud. The raw binary file we provide in rosbag contains
these data.

For the convenience of users who use Robot Operation
System (ROS), all sensor data is packaged and provided
together in rosbag, and information about the topic name,
topic type, frame rate, etc. of the data corresponding to the
sensor is organized in Table 2.
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Figure 11. Visualization of multi-sensor data, at the same time. (a) Bumblebee-XB3 raw Bayer image, left, center, right views. (b)
Bumblebee-XB2 left, right views; Hikvision camera; LiVOX Avia point cloud. (c) reflect image of Ouster OS0-128. (d) signal image
of Ouster OS0-128. (e) Ouster OS0-128 point cloud. (f) Horizontal Velodyne HDL-32E point cloud. (g) Vertical Velodyne VLP-32C
point cloud.

The calibration files of the sensors are provided under
calibration folder in sensor suit.yaml. The
specific content of each .yaml file is related to the
calibration method of each sensor or sensor suite. We will
elaborate necessary information and definition in the next
section Section 4. We ran some SOTA SLAM algorithms
on the dataset baselines. These results are available in
algorithm name.txt under folder baseline. For
more information, please refer to Section 5.

4 Sensor Synchronization and Calibration
Accurate time synchronization and spatial calibration of
multiple sensors are necessary for sensor spatiotemporal
fusion. In the system, sensors are securely mounted using
aluminum profile brackets, 3D prints, and carbon fiber
sheets. Time synchronization of multiple sensors and data
acquisition computers is achieved using an FPGA-based
hard trigger circuit and NTP synchronization network.
Calibration data and methods can be obtained from
this web page: https://ustc-flicar.github.io/
calibration/.

4.1 Accurate Modeling of Multi-sensor
Platform

As shown in Figure 12, we utilize the Photoneo PhoXi 3D
Scanner L for precise modeling of the data acquisition multi-
sensor platform. Its technical specifications are as follows:

• Scanner Type: structured light scanner
• Calibration Accuracy (1 σ): 0.200 mm

Figure 12. Precise modeling of the data acquisition
multi-sensor platform using Photoneo PhoXi 3D Scanner. The
scan result point cloud and the SolidWorks design model

• Temporal Noise (1 σ): 0.190 mm
• Resolution: Up to 3.2 million 3D points
• Scanning Range: 870 - 2150 mm
• Optimal Scanning distance: 1239 mm
• Scanning Area (sweet spot): 1082 x 772 mm
• Point-to-Point Distance: 0.524 mm
• Scanning Time: 250 - 2750 ms
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Figure 13. The multi-sensor time synchronization system
structure, which is explained in detail in section 4.2.

These specifications exemplify the Photoneo PhoXi 3D
Scanner L’s capabilities, allowing for precise and detailed
modeling for our multi-sensor platform.

Multiple-angle modeling pointcloud of data acquisition
platform with the PhoXi 3D scanner, SolidWorks assembly
models, and drawings are provided along with the dataset.
Before users run the calibration program using the USTC
FLICAR dataset, we recommend referring to the structured
light scanning modeling data and SolidWorks design models
to obtain reliable initial calibration values.

4.2 Time Synchronization
The time synchronization module performs the time
synchronization of the camera, LiDAR, IMU, and the main
control computing module. The first level of the time
synchronization module is the GNSS receiving module,
which obtains the UTC true time data with nanosecond
precision through the satellite. The logic circuit processes
the timing information, converts the GNSS signal into PPS
and NMEA signals, and the LiDAR is connected to the
two signals for time synchronization. At the same time,
the PPS signal is connected to the IMU module and the
frequency divider module. The PPS signal synchronizes the
timestamp of the IMU’s inertial data with the true UTC
time, the frequency divider module is used to trigger the
camera at the desired frame rate using the PPS signal.
The camera trigger signal is aligned with the PPS signal
at the edge of the whole second, and the delay between
the two signals is within a few tens of ns. Therefore, the
camera exposure image time is synchronized with the IMU
data acquisition time. The time of each camera in a stereo
camera is time-synchronized during device manufacture, so
the trigger signal triggers all cameras on the serial trigger

line simultaneously. The computing master accepts the NTP
network data packets converted and sent by the FPGA and
performs time synchronization through the NTP protocol.

For the horizontal LiDAR and the stereo camera on
the axis, a photoelectric trigger sensor is designed. When
the LiDAR rotates to coincide with the camera’s field of
view, the excitation switch is turned on and the camera
is exposed to collect images to ensure the spatiotemporal
synchronization of point clouds and images.

4.3 Mono and Stereo Cameras Calibration
In order to make full use of the metric information of 2D
images for 3D tasks, we calibrate the intrinsic parameters
of each camera and the extrinsic parameters between stereo
cameras. The calibration approach we use is proposed by
Zhang [2000]. A known size checkerboard is placed at
different distances and attitudes relative to the cameras,
and the cameras in the same stereo pair are triggered
synchronously. They collect images of the checkerboard at
a fixed frame rate as calibration data. The camera parameters
are provided in the OpenCV format, which are stored in the
camera name.yaml calibration file.

The camera parameters are notated as:
• image size ∈ N2

• camera matrix ∈ R3×3

• distortion coefficients ∈ R5

• rectification matrix ∈ R3×3

• projection matrix ∈ R3×4

Here, the distortion coefficients vector is used to rectify
the tangential and radial distortion of images, using the
pinhole camera distortion model. The rectification matrix is
only applicable to stereo cameras, which is used to align the
epipolar lines between two stereo images for 3D stereo vision
geometry calculation. It is an identity matrix for monocular
cameras.

The camera projection matrix is used to project objects in
the 3D world to the camera’s 2D image pixels:

Pproj =

fx 0 cx Tx

0 fy cy Ty

0 0 1 0

 (1)

The left 3× 3 portion is the intrinsic camera matrix for
the rectified image. The fourth column

[
Tx Ty 0

]T
is

to translate the optical center of the second camera to the
position in the frame of the first camera. For monocular
cameras, Tx = Ty = 0. The average calibration error of
monocular cameras is around 0.08 pixels, while the average
calibration error of stereo cameras is around 0.1 pixels.

4.4 Visual Inertial Calibration
The fusion of visual and inertial sensors will greatly
improve the robustness of the visual-based SLAM system.
The camera provides high-resolution measurements of the
environment, while the IMU measures the internal ego-
motion of the sensor platform.

The first task is to calibrate the intrinsic parameters of
the IMU. The IMU sensor will drift over time, therefore it
is necessary to add an error term into the motion model to
correct the IMU raw data based on the IMU noise model.
We fixed the IMU still on the anti-shake optical table for 4
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Figure 14. Time synchronization signals in the visual-inertial
system. The time resolution of the abscissa, from top to bottom,
is 200ms, 20ms, and 2ms, from a Tektronix MDO3024
oscilloscope. Blue: 1Hz PPS signal; Red: 20Hz camera trigger
signal.

Figure 15. Reprojection error of camera-IMU extrinsics
calibration using Kalibr.

hours and recorded the data. The toolbox imu utils is used
for calibration.

IMU intrinsic parameters in the corresponding yaml file
are as followed:

• σg — gyroscope white noise
• σa — accelerometer white noise
• σbg — gyroscope bias instability
• σba — accelerometer bias instability
Note that calibration is done in a nearly ideal static

setup. In a dynamic setting, the noise will be higher with
other factors such as temperature changes. Therefore, it is
beneficial to appropriately increase these parameters when
using IMU data for camera-IMU extrinsic calibration or
visual-inertial odometry.

The second step is to calibrate the extrinsic parameters
between the IMU and the camera. The intrinsic parameters
of the camera have already been calibrated in section 4.3.
The time synchronization accuracy between the IMU and
the monocular camera is shown in Figure 14. The time
drift between the IMU clock reference PPS signal and the
camera trigger signal is within 0.2 ms. The Kalibr Rehder
et al. [2016] visual-inertial calibration toolbox is used to
calibrate the relative spatial relationship between the IMU
and the camera. The camera and IMU are rigidly fixed with
the base bracket. The overall visual-inertial system performs
translation along the XYZ three-axis and full rotation around

Figure 16. The point cloud was obtained from the calibration
process. The image above shows point clouds in the indoor
calibration room. The green point cloud is the Ouster OS0-128
LiDAR, the purple point cloud is the Velodyne HDL-32E LiDAR,
the red point cloud is the Velodyne VLP-32C LiDAR, and the
orange point cloud is the LiVOX Avia LiDAR.
The image below shows outdoor measurements. The red point
cloud is the Velodyne HDL-32E LiDAR, and the green point
cloud is the Velodyne VLP-32C LiDAR.

each axis in front of an AprilTag Olson [2011] grid sequences
with known size, and records the data for calibration.

camera-IMU extrinsics in the corresponding yaml file are
as followed:

• rotation matrix: Rimu
cam ∈ SO(3) ⊂ R3×3

• translation vector: timu
cam ∈ R1×3

T imu
cam =

[
Rimu

cam timu
cam

01×3 1

]
(2)

The reprojection error of the Camera-IMU extrinsic
parameter calibration is shown in Figure 15, for most images
the reprojection error is within 1.0 pixels. The mean, median,
and standard deviation of the reprojection error are 0.352
pixels, 0.321 pixels, and 0.197 pixels, respectively.

4.5 Multiple LiDAR Calibration
A single LiDAR has problems such as low information
density and vertical blind spots. Therefore, we equip the
aerial platform with LiDARs from different angles for
environmental perception. Extrinsic parameter calibration
between multiple LiDARs is a prerequisite for the fusion of
LiDAR data.
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Specifically, we refer to the Ouster OS0-128 as the
base LiDAR on account of its biggest FOV. The extrinsic
parameters between the remaining three LiDARs and the
OS0-128 are derived through the Normal Distributions
Transform (NDT), as proposed by Biber and Straßer
[2003]. To minimize the adverse impact of the environment
on the calibration accuracy, we choose a non-degenerate
scene Zhang et al. [2016] characterized by a complex
structure for the calibration task. Meanwhile, to improve
the accuracy, a series of frames for each LiDAR were
acquired from diverse positions and angles, which optimize
the extrinsic parameters jointly.

As shown in Figure 16, according to the calibration
results, the point clouds from the four LiDAR sensors (OS0-
128, HDL-32, VLP-32, and LiVOX) are transformed and
displayed in the same coordinate system.

The extrinsic parameters for multiple LiDARs in the
corresponding yaml file are as follows:

• rotation matrix: RLidar2
Lidar1 ∈ SO(3) ⊂ R3×3

• translation vector: tLidar2
Lidar1 ∈ R1×3

TLidar2
Lidar1 =

[
RLidar2

Lidar1 tLidar2
Lidar1

01×3 1

]
(3)

4.6 LiDAR Inertial Calibration
We use the online method to calibrate the extrinsic
parameters of the rotation between the Velodyne HDL-32E
LiDAR and the Xsens MTi-G-710 IMU, which can be seen
as a kind of hand-eye calibration. The attitude preintegration
result of the IMU measurement value from time tk to time
tk+1 is denoted as qik+1

ik
. qLk+1

Lk
is the attitude change of the

LiDAR scan at time tk relative to the LiDAR scan at time
tk+1, obtained by Generalized-ICP Segal et al. [2009]. qi

L is
the rotation transformation from LiDAR to IMU.

According to the properties of the rotation matrix, we can
get:

q
ik+1

ik
= qi

L ⊗ q
Lk+1

Lk
⊗ qL

i (4)

q
ik+1

ik
⊗ qi

L = qi
L ⊗ q

Lk+1

Lk
(5)

According to the quaternion properties described in Sola
[2012], we transform the above formula q into matrix
representation Q:

(Q
ik+1

ik

+
−Q

Lk+1

Lk

−
)qi

L = 0 (6)

We fully moved the LiDAR-Inertial system to collect N
sets of measurement data. The final task is to solve the
following overdetermined system:

 Qi1
i0

+
−QL1

L0

−

...

QiN
iN−1

+
−QLN

LN−1

−

 qi
L = A4N×4q

i
L = 0 (7)

We use the SVD method to solve this overdetermined
system, perform SVD decomposition on A4N×4, and then
take the eigenvector corresponding to the smallest singular
value as the final result of qi

L.
The translation vector timu

Lidar between LiDAR and IMU is
calibrated and estimated based on the initial value of the size

Figure 17. The failure scenario of direct calibration between
Velodyne VLP-32C and Xsens MTi-G-710, when the sensor
platform is in a slow movement during initialization, occurring
significant drift in the calibration algorithm. LiDAR IMU Init Zhu
et al. is used. Similar problems also exist in some other
open-source and our own calibration methods.

of the 3D model. Since the connecting part is 3D printed, the
accuracy of the calibration can be trusted.

LiDAR-IMU extrinsics in the corresponding yaml file are
as followed:

• rotation matrix: Rimu
Lidar ∈ SO(3) ⊂ R3×3

• translation vector: timu
Lidar ∈ R1×3

T imu
Lidar =

[
Rimu

Lidar timu
Lidar

01×3 1

]
(8)

Apart from the Velodyne HDL-32E LiDAR, there are
three other LiDAR sensors. Among them, the LiVOX
Avia LiDAR and Ouster OS0-128 LiDAR come with
built-in IMUs. We recommend utilizing their built-in
IMUs for algorithm development involving LiDAR-IMU
coupling, such as SLAM. These IMUs are meticulously
time-synchronized and spatially calibrated during the
manufacturing process, ensuring precise alignment with the
LiDAR sensor. For accurate extrinsic parameters, please
refer to the manufacturer’s manual.

However, when it comes to the Velodyne VLP-32C
LiDAR, we do not recommend directly calibrating it with
Xsens. This is primarily due to the greater distance between
the two devices and the VLP-32C’s vertical installation,
which leads to a sparse feature set in the captured
point cloud. Consequently, the accuracy of calculating
LiDAR odometry through frame-to-frame matching is
compromised and the initial value estimation will be more
difficult, making it challenging to obtain precise extrinsic
parameters in the Xsens coordinate system through direct
calibration using existing technology. Although we have
explored various good open-source calibration methods
for directly calibrating the VLP-32C and Xsens, such as
LiDAR IMU Init Zhu et al. [2022], the results have proven
unsatisfactory, as depicted in Figure 17.
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Figure 18. Velo2Cam Beltrán et al. camera-LiDAR calibration.
Up-Left : special calibration board, project LiDAR point cloud to
the image. Up-Right : colorize LiDAR point cloud with image.
Down: Aerial scenes LiDAR points fusion with images.
(Velodyne-HDL-32E and Bumblebee-xb3-center)

To address this issue, we propose a feasible solution.
We recommend leveraging the multi-LiDAR calibration
extrinsic parameters obtained in Section 4.5, indirectly
calculated using the Velodyne HDL-32E LiDAR as an
intermediary. Additionally, it is advisable to consult
the detailed structured light modeling and Solidworks
model described in Section 4.1. This approach will
yield significantly higher accuracy in determining extrinsic
parameters compared to direct calibration. Similarly, the
LiVOX Avia and Ouster OS0-128 LiDARs can also obtain
precise extrinsic parameter transformations to the Xsens
Body frame by utilizing the Velodyne HDL-32E LiDAR as
an intermediary.

On the other hand, the USTC FLICAR dataset also
provides reliable baselines for the extrinsic parameters
calibration of the LiDAR-IMU. We look forward to a
LiDAR-IMU extrinsic parameters calibration algorithm with
higher robustness, accuracy, and versatility.

4.7 LiDAR Camera Calibration
Image data has rich and dense object information, but
lacks the depth information of the picture. The LiDAR data
can just make up for this defect, giving accurate depth
information and object structure information. In the process
of 3D target detection, the fusion of image and LiDAR point
cloud information can achieve higher accuracy.

Accurate camera-LiDAR calibration is a necessary
condition for the fusion. We use the method proposed by
Velo2cam Beltrán et al. [2022] to get the extrinsic parameters
of LiDAR and cameras. Figure 18 illustrates the calibration
scene and effect of Velo2cam. A special calibration board
with four ArUco tags and four circular reference holes is
placed in different positions as a calibration target. The
3D pose of each ArUco marker relative to the cameras
is obtained by solving a classic perspective-n-point (PnP)
problem to obtain the 3D position and orientation of
the reference holes in space. Besides, automatic targetless
calibration approach can also be used to get the extrinsic
calibration between LiDARs and cameras. These methods

Figure 19. The sensor system used to capture the datasets
consists of multiple sensors, each reporting measurements in
its own reference frame S. The datasets also include raw data
from ground truth instruments, reported in the target ball frame
Sball and Laser tracker frame R. The body frame B is aligned
with the IMU sensor frame I. Calibration information for all
extrinsic parameters linking the sensors to the body frame B
and intrinsic parameters is included in the dataset. The
definition and transformation of the coordinate system of the
data acquisition system will be further discussed in Section 4.8

are convenient and can be performed online. Our team
conducted a careful survey Li et al. [2022] of automatic
targetless camera-LiDAR calibration.

camera-LiDAR extrinsics in the corresponding yaml file
are as followed:

• rotation matrix: Rcam
velo ∈ SO(3) ⊂ R3×3

• translation vector: tcamvelo ∈ R1×3

T cam
velo =

[
Rcam

velo tcamvelo

01×3 1

]
(9)

The commonly used camera-LiDAR multimodal data
fusion schemes directly use LiDAR points as multimodal
data aggregation points. LiDAR points are projected to the
image plane as follows:

zcam

xy
1

 = hPprojT
cam
velo


Xvelo

Yvelo

Zvelo

1

 (10)

where Xvelo, Yvelo, Zvelo denote 3D location of LiDAR
point, x, y, zcam denote its 2D position and projected
depth on the image plane. Pproj got in section 4.3 denotes
the camera intrinsic parameter.And h represents the scaling
factor due to down-sampling. Examples of data fusion are
shown in Figure 18.

4.8 Ground Truth Alignment
To provide useful and accurate ground truth, the measure-
ments from the laser tracking system are spatiotemporally
aligned with the sensor system (body frame B is defined at
the IMU sensor frame I). The basic information of the raw
measurement data used to generate ground truth is as follows.
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Figure 20. Example of a factor graph created by our system. The states to be estimated are represented by circles, and the
measured values are represented by squares. For visualization, we group all calibration parameters into one node C1, G1 is the
rotation from gravity alignment to laser tracking frame. On the right are the example ground truth trajectories generated on our
dataset. On the right is the visualization of the ground truth of several sequences: (a) HF002, (b) HF003, (c) HF006, (d) HF009.

The definition of the coordinates below can be reviewed in
Figure 19 :

• The API laser tracking system is mounted horizontally
on the ground using a tripod. The target ball frame Sball it
tracks is rigidly fixed to the body of the sensor platform. The
3D position of the target point trajectory in the laser tracking
frame R, represented as pR

Sball
∈ R3, is output at 50Hz

(second highest). The time tR is referenced to the intrinsic
clock of the tracking system.

• The Xsens IMU/INS is rigidly fixed to the center of the
sensor platform body with the body frame B defined at its
own frame I. Acceleration aI(B) ∈ R3 and angular velocity
ωI(B) ∈ R3 are output under the IMU frame I at 400Hz
(highest). The origin of the body frame B coincides with
the origin of the accelerometer. At the same time, the AHRS
(Attitude and Heading Reference System) system of Xsens
outputs the attitude qW

B ∈ H of the sensor platform in world
frame W (NED coordinates). qW is a statistical optimal
3D orientation estimate computed by the Xsens Kalman
Filter algorithm (XKF3) using signals of the rate gyroscopes,
accelerometers, and magnetometers. Xsens is synchronized
with the GPS clock, the time tI(B) = tgps.

• The Velodyne HDL-32E forms a LiDAR-Inertial system
together with Xsens IMU. Here its data is not used directly
but used as LiDAR odometry to constrain and optimize the
trajectory obtained by IMU preintegration. It is synchronized
with the same GPS clock as Xsens, therefore tlidar = tgps =
tI(B).

In order to make full use of these data to generate reliable
ground truth, three steps are performed as shown in Figure
20. Here comes the details of each step :

• Step I. IMU Preintegration
The purpose of Step I is to preintegrate the high-frequency

data of the IMU to obtain trajectory data at the same
frequency as the IMU (400Hz), which will serve as a
benchmark for Step II. Based on the IMU noise model,
the measurements of angular velocity and acceleration from

IMU are defined as:

tω̂B = tωB
tbω + tnω (11)

tâB = RB
W

(
taB − gW

)
+ tba + na (12)

where gW is the constant gravity vector in the world frame
W , and RB

W is the rotation matrix from W to B. Adding
a slowly varying bias tb and white noise n to the model
corrects for tωB and taB . During time t+ δt, velocity
t+δtvB ∈ R3, position t+δtpB ∈ R3 and rotation t+δtqB
∈ H are obtained by preintegrating (discrete calculus) the
corrected acceleration and angular velocity measurements
according to Newton’s laws of motion.

The 1Hz LiDAR odometry is modified based on LOAM
Zhang and Singh [2014] using Velodyne HDL-32E LiDAR
data, which has good accuracy and robustness. Due to the
long-term movement of the IMU will produce drift errors, the
LiDAR odometry provides an initialization reference for the
IMU preintegration trajectory per second, making the results
more accurate. The transformation T imu

lidar ∈ SE(3) from
Slidar to B has been obtained by the method mentioned in
Section 4.6.

The final result of the first step is a 400Hz IMU odometry,
its final form is:

xB0 = [tB pB0 qB0 ]
T (13)

• Step II. Motion Correlation Analysis The purpose
of step II is to spatiotemporally align the laser tracker
measurements with the body frame based on motion
correlation analysis, as shown in figure 21. Our method
is similar to Qiu et al. [2020]. In this step, we have to
analyze two signals, the first is IMU odometry xB0 gotten in
step I, and the second is the measurement of laser tracking
system xR =

[
tR pR

Sball
p0

B
Sball

]T
, p0

B
Sball

indicates the
initial transformation from Sball to B estimated from the
size of the mechanical installation. For the two signals, since
the laser tracker and the bucket truck are kept horizontal to
the ground using a tripod and hydraulic legs respectively
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Figure 21. Temporal alignment of IMU preintegration
trajectories with laser tracker trajectories via motion correlation
analysis in Step II.

during the measurement process, the motion in the z
direction already has a high correlation without rotation
estimate. Therefore, the time delay analysis is performed
by calculating the cross-correlation between zB0

(tB) and
zR(tR). We enumerate the time offset, and the maximum
of the cross-correlation function indicates the point in time
where the signals are best aligned:

τdelay = argmax
td∈R

((zB0
⋆ zR)(td)) (14)

After finishing this step state xR is aligned to tB . Here we
get:

xB1 =
[
tB pR

Sball
p0

B
Sball

]T
(15)

Finally, the raw data and states prepared for step III is as
followed (Sb = Sball) :

xraw =
[
tB pR

Sb
p0

B
Sb

qW
B gW aB ωB ba,ω na,ω

]T
(16)

• Step III. Factor Graph Optimization
The final step is to use the known measurements and states

to generate an optimal estimate of all states of the ground
truth in the body frame B. Our method is modified based on
the vicon2gt Geneva and Huang [2020] toolbox. Specifically,
the following states are estimated:

x =
[
xB1 ...xBN xC q̄RW

]T
(17)

xBi =
[
q̄Bi

R pR
Bi

vR
Bi

ba,i bω,i

]T
(18)

xC =
[
q̄BSb

pB
Sb

∆tRB
]T

(19)

Here we are estimating N inertial states at laser tracker
frequency 50Hz, along with a calibration state xC containing
the spatial-temporal parameters between the target ball frame
Sb and IMU frame B, and q̄RW the rotation between the
global laser tracking frame R and global inertial frame W .
q̄Bi

R is the unit quaternion parameterizing the rotation from
the global laser tracking frame of reference R to the IMU

local frame Bi at time ti. pR
Bi

and vR
Bi

are the position
and velocity of the IMU body frame B expressed in the
global laser tracking frame R, respectively. ba,i and bω,i are
the biases of accelerometer and gyroscope. ∆tRB is the time
offset between the laser tracking system and the IMU body
frame that we further estimate on the basis of step II. The
inertial state xBi lies on the manifold defined by the product
of the unit quaternions H with the vector space R12 (i.e. M
= H × R12) and has 15 DoF.

An overview of the nonlinear factor graph we solved is
shown in Figure 20.

The final ground truth is available in TUM format Sturm
et al. [2012]:
timestamp tx ty tz qx qy qz qw

1654673708.251979 -0.000063 0.000072 -0.000068

-0.050800 -0.025895 0.001970 0.998371

...

5 Evaluation and Baselines
We run some state-of-the-art baselines on several sensor
suites and data sequences to illustrate the characteristics
and challenges of our dataset. The absolute trajectory error
(ATE, as defined in Sturm et al. [2012]) is used as the
indicator to measure the effect of the SLAM algorithms.
To ensure fairness, we carefully tuned the parameters for
the algorithms evaluated on each data sequence to make the
results of each algorithm close to their best. And parameters
of the algorithms using the same sensor suite are set to
be exactly the same, the online parameter estimation of
some algorithms will not be enabled. Table 4 summarizes
necessary information and the corresponding results. The
algorithms evaluated are run on a PC with Ubuntu 18.04
operating system, ROS melodic, Intel® Core™ i7-8750H
CPU @ 2.20GHz, and 16GB RAM.

For the evaluation of visual SLAM, we have tested several
state-of-the-art algorithms on different sensor suites and
data sequences. These include ORB-SLAM3 Campos et al.
[2021] on two monocular cameras, ORB-SLAM3 and VINS-
Mono Qin et al. [2018] on two monocular-inertial systems,
and ORB-SLAM3 and VINS-Fusion on a stereo and stereo-
inertial system. Our stereo camera consists of three cameras,
resulting in three stereo pairs in total. In this case, we have
chosen the left and right cameras with the longest baseline of
24cm.

As shown in the table, we have tested the same algorithm
on two different monocular cameras because they are
complementary to each other. As shown in Figure 22, the
Bumblebee-XB3 camera has a larger field of view and higher
sensitivity to light compared to the Hikvision camera and can
capture more environmental information in the darkness, but
it may produce glare in strong light. The Hikvision camera
has the opposite strengths and weaknesses. We hope that at
least one camera can provide a good environment perception
for visual SLAM in each working environment. At the same
time, we are analyzing why the accuracy of visual SLAM
decreases in some sequences by comparing the results on
the two cameras. For example, in the hf005 sequence, the
accuracy of ORB-SLAM3 on the Bumblebee-XB3 camera
is significantly lower than on the Hikvision camera and
fails halfway, which is probably due to glare from the xb3
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Table 4. ATE (m) of state-of-the-art SLAM methods over USTC FLICAR datasets. * points out that runs have not been successful
on less than 1/2 of a sequence. × points out that runs have not been successful on more than 1/2 of a sequence. — points out that
data is not available in a sequence. The ATE in this table is calculated using evo Grupp [2017].

Sequence Sensor Suite hf001 hf002 hf003 hf004 hf005 hf006 hf007 hf008 hf009

Time 15:35 15:48 16:14 16:30 17:20 18:13 19:01 21:20 21:27

ORB-SLAM3 Hikcam 0.097 0.028 0.093 0.081 0.163 0.144* 0.084 × ×
(Visual) Xb3-C 0.144 0.182 0.106 0.113 0.417* 0.178 0.126 × ×

ORB-SLAM3 Hikcam+Xsens 0.017 0.181 0.090 0.082 0.086* 0.118 0.078 × ×
(V-Mono-Inertial) Xb3-C+Xsens 0.150 0.276 0.156 0.116 0.159* 0.184* 0.407 × ×

VINS-Mono Hikcam+Xsens 0.146 0.291 0.332 0.092 0.204 0.232 0.131 1.381 1.794
(V-Mono-Inertial) Xb3-C+Xsens 0.108 0.166 0.163 0.089 0.156 0.150 0.125 0.074 0.116

ORB-SLAM3
(Stereo)

Xb3-L/R 0.150 0.184 0.135 0.117 0.215 0.200 0.137 × ×

VINS-Fusion
(Stereo)

Xb3-L/R 0.155 0.211 0.147 0.097 0.213 0.250 0.131 0.154 1.277

ORB-SLAM3
(V-Stereo-Inertial)

Xb3-L/R + Xsens 0.406 0.184 0.205 0.136 0.226 0.282 0.218 0.568* 0.551*

VINS-Fusion
(V-Stereo-Inertial)

Xb3-L/R + Xsens 0.116 0.192 0.096 0.089 0.164 0.161 0.166 0.059 0.136

A-LOAM
(Horizontal-LiDAR)

Velo-HDL32 0.089 0.118 0.091 0.078 0.171 0.115 0.078 0.053 0.062

A-LOAM
(Vertical-LiDAR)

Velo-VLP32 0.265 0.278 0.526 — 0.423 0.481 0.489 0.507 0.644

LeGO-LOAM
(Horizontal-LiDAR)

Velo-HDL32 0.094 0.121 0.075 0.081 0.165 0.116 0.080 0.046 0.059

LeGO-LOAM
(Vertical-LiDAR)

Velo-VLP32 0.698 1.528 1.047 — 0.771 0.484 1.214 1.962 1.325

LIO-SAM
(H-LiDAR-Inertial)

Velo-HDL32
+ Xsens

0.086 0.114 0.075 0.079 0.161 0.111 0.073 0.042 0.054

FAST-LIO
(H-LiDAR-Inertial)

Velo-HDL32
+ Xsens

0.088 0.115 0.081 0.078 0.168 0.117 0.075 0.052 0.059

FAST-LIO
(H-MEMS-Inertial)

LiVOX-Avia
+ Internal IMU

0.063 0.069 0.111 0.079 0.147 0.119 0.082 0.050 0.060

Duration (s) 192.5 217.8 217.1 155.9 260.4 230.6 207.6 210.6 238.7
Length (m) 26.46 33.50 34.26 24.10 22.82 33.90 34.32 30.78 35.42
Avg. Vel./ (m/s) 0.137 0.154 0.158 0.155 0.088 0.147 0.165 0.146 0.148
Ang. Vel. (◦/s) 0.537 0.529 0.503 0.660 0.556 0.614 0.612 0.574 0.148

camera. Similarly, in the hf009 sequence, the accuracy of
VINS-Mono on the Bumblebee-XB3 camera is significantly
higher than on the Hikvision camera, which is because
the Bumblebee-XB3 camera provides more environmental
information in the darkness.

Overall, the accuracy of the ORB-SLAM3 method
is slightly higher than the VINS-based SLAM method
in sequences with good lighting conditions (no glare,
no darkness), consistent with the experimental results
reported in their paper, which is based on the EuRoC
dataset. However, the robustness of the VINS-based SLAM
method is significantly higher in extreme light and dark
environments, and both can maintain the same accuracy as
in good lighting conditions. For example, in the hf008 and
hf009 night sequences, we used the Bumblebee-XB3 camera
which can image effectively in the darkness. However, the
ORB-SLAM3 algorithm still failed due to its inability to
extract features. On the other hand, both VINS-Mono and
VINS-Fusion were able to maintain the same accuracy as the
situation in good lighting conditions.

Besides, the accuracy and robustness of visual SLAM
under semi-failures can be improved by tightly coupling a
well-calibrated IMU. For example, in hf009 night sequence
with a wide range of rotation, the ATE of VINS-Fusion that

Figure 22. The different performances of the two cameras
under complex lighting conditions. The upper part is the
Bumblebee XB3 center camera, and the lower part is the
hikvison camera. The upper and lower pairs are at the same
moment.

only uses a stereo camera is 1.277 m. If IMU data is used,
the ATE of VINS-Fusion will decrease to 0.136 m.

For the evaluation of LiDAR SLAM, we tested A-LOAM
(an implementation of LOAM Zhang and Singh [2014]
modified by Qin et al.) and LeGO-LOAM Shan and Englot
[2018] on two 32-beam Velodyne LiDARs, one horizontal
and one vertical. We also used a LiDAR-Inertial system
consisting of a horizontal Velodyne HDL-32E LiDAR and an
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Figure 23. The ground truth is marked in red and the SLAM
trajectory is marked in yellow. The figure shows the running
results of Fast-LIO on the hf006 sequence.

Xsens IMU to test LIO-SAM Shan et al. [2020] and FAST-
LIO Xu and Zhang [2021]. FAST-LIO was also tested on a
LiVOX MEMS LiDAR.

The LiDAR SLAM algorithms that were tested on data
sequences from a horizontal LiDAR achieved good results,
with the ATE of approximately 0.1 meters. The results are
reported in Figure 23 Additionally, the accuracy of LiDAR
SLAM can be further improved by tightly coupling a well-
calibrated IMU. This suggests that among current sensing
technologies, LiDAR is relatively reliable for the localization
and mapping of aerial work robots.

However, LiDAR is not without its flaws. Issues have been
observed when using the vertical LiDAR. It is necessary
for aerial work robots to have 360-degree perception in the
vertical direction, as obstacles may come from any direction
while in motion. Merely perceiving in the horizontal
direction is not sufficient. In this comparison, we have chosen
algorithms that use a single LiDAR to minimize the influence
of calibration errors. As shown in the table, the ATE of A-
LOAM on the vertical LiDAR is 3 to 10 times higher than on
the horizontal LiDAR in the same sequence, despite slight
differences in the LiDAR models. This experimental result
is convincing enough. When the field of view rotates 180
degrees, the world seen by the LiDAR is very different. For
the lower half of the LiDAR, the ground and walls occupy
most of the point cloud; for the upper half of the LiDAR,
only scattered small objects such as wires and branches in
the air can reflect LiDAR echoes, and most of the lasers

disappear in the sky. This is a typical scenario where LiDAR
odometry fails — low texture. Besides, due to the large
range of rotations of the aerial platform, the overlap between
adjacent LiDAR frames is small during rotations, which is
not conducive to the continuous tracking of features. This is
evident in sequences hf003, hf007, hf008, and hf0009, which
all have large rotations and therefore larger ATE values
compared to other sequences. The aerial platform itself can
also act as a dynamic object and cause interference. Among
the algorithms tested, LeGO-LOAM tested on the vertical
LiDAR performed the worst because it is difficult to extract
the ground plane from the point cloud during aerial motion.
In this case, optimization for ground motion deteriorates the
accuracy of the algorithm.

Overall, the results of the evaluations show that LiDAR-
based SLAM algorithms tend to have good accuracy, with an
ATE of approximately 0.1 meters when using a horizontal
LiDAR. The accuracy of visual SLAM algorithms varied
depending on the sensor and the lighting conditions, with
ORB-SLAM3 generally performing better in good lighting
conditions and VINS-based algorithms being more robust
in extreme lighting conditions. The accuracy of visual
SLAM can also be improved by tightly coupling a well-
calibrated IMU. LiDAR-based SLAM algorithms tended
to have difficulty in scenarios with low texture or large
rotations, with the ATE increasing significantly in these
cases.

We did not aim to intentionally make it difficult for these
algorithms. To verify whether the accuracy of the algorithms
decreases under faster or more aggressive movements, you
can try downsampling the data and running the algorithms
to simulate faster speeds. We have only evaluated a select
number of classic SLAM methods in this study. More recent
SLAM methods, such as LVI-SAM Shan et al. [2021], which
combines VINS-Mono and LIO-SAM, may improve upon
these classic methods.

6 Semantic Annotations
In this section, we will present the Semantic FLICAR
dataset, including its generation process, content, and
distinctive features. This dataset can be downloaded from the
following website:https://ustc-flicar.github.
io/semantic/.

6.1 Annotation Process
The rapid progress in artificial intelligence (AI) and the
foundation AI Large Vision Models (LVMs) has opened up
new possibilities for collaborative data annotation between
human annotators and AI systems, resulting in significant
improvements in data annotation and production efficiency.

Building upon the capabilities of the Segment Anything
Model (SAM) Kirillov et al. [2023], we present the
Semantic FLICAR dataset, which provides fine-grained
image semantic segmentation and 128-beam LiDAR ring
signal scene segmentation for the USTC FLICAR dataset.
The Semantic FLICAR dataset offers detailed annotations
that greatly enhance our understanding of object boundaries
and semantic information in aerial work scenes, making it an
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Figure 24. Semantic annotation data engine based on SAM: Semantic FLICAR dataset involves the initial generation of global
mask segmentations by the Segment Anything Model (SAM), followed by collaborative refinement by human annotators through
interactive prompts for regions of interest, resulting in precise and detailed annotations.

Figure 25. Bumblebee XB3 center image semantic segmentation preview in HF001 sequence

invaluable resource for various aerial work computer vision
applications.

The data annotation process for the Semantic FLICAR
dataset is illustrated in Figure 24. Initially, the USTC
FLICAR dataset is input into the Segment Anything
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Figure 26. Semantic label categories for Bumblebee XB3
center image data

Figure 27. Semantic maskes annotation statistics for
Bumblebee xb3 center image data

Model (SAM), automatically generating global mask
segmentations. This step leverages SAM’s efficiency and
promptability to produce initial annotations quickly. Besides,
human annotators actively participate in the process to
further improve the quality and precision of the annotations.
Human annotators interact with the initial masks generated
by SAM and provide prompts on regions of interest.
This collaborative approach allows the annotators to refine
the boundaries and assign accurate semantic information,
resulting in more precise annotations. The combination of
AI-generated masks and human expertise ensures that the
Semantic FLICAR dataset achieves a high level of accuracy
and detail.

Figure 28. Semantic label categories for Ouster OS0-128
signal image data

Figure 29. Semantic maskes annotation statistics for Ouster
OS0-128 signal image data

6.2 Semantic FLICAR Dataset
The semantic segmentation data of Semantic FLICAR is
provided in the format of the VOC segmentation dataset. In
total, 1,774 camera keyframes and 1,426 LiDAR keyframes
were annotated at 1 Hz, resulting in 56,889 unique semantic
masks.

When annotating camera images, the higher resolution
allows for the definition of more diverse and fine-grained
object categories. As depicted in Figure 26, the annotation
of the Bumblebee xb3 center image in the HF0XX sequence
includes 20 distinct object categories, covering various
objects commonly found in aerial work scenarios. The
statistical charts for each category label can be found in
Figure 27. For a preview of the annotated camera dataset,
please refer to Figure 25.

Keyframe annotation for Ouster LiDAR is typically paired
with camera data. This means that the closest timestamped
pair of camera and LiDAR data will be annotated. Unlike
camera images, LiDAR has a lower resolution but a wide
field of view. In our system, we choose to annotate using the
highest-resolution Ouster OS0-128 LiDAR. The annotation
is performed on the signal image data, which is a panoramic
image with a resolution of 1024×128. This signal image
is derived from the near-infrared signals and environmental
data captured by the Ouster LiDAR. It is spatially aligned
with other data layers of the Ouster LiDAR, such as point
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Figure 30. Ouster OS0-128 signal image semantic segmentation preview in HF001 sequence

clouds, which is perfectly spatially correlated, with zero
temporal mismatch or shutter effects, and has 16 bits per
pixel and linear photo response. As depicted in Figure 28,
the annotation of the Ouster OS0-128 signal image includes
10 distinct object categories. The statistical charts for each
category label can be found in Figure 29. For a preview of
the annotated LiDAR dataset, please refer to Figure 30.

6.3 Data Association and Augmentation

Unlike datasets that focus only on semantic segmentation
tasks, the Semantic FLICAR dataset is built upon the USTC
FLICAR dataset. Therefore, the previously mentioned sensor
calibration and SLAM-related content will play a crucial
role in data association and augmentation for the Semantic
FLICAR dataset.

As depicted in Figure 31, the segmentation annotations
of the Bumblebee XB3 center image can be mapped to the
left image and right image using the calibration results of
the stereo camera. This mapping results in two additional
stereo perspectives, effectively tripling the number of labels.
In Figure 32, the segmentation annotations of the Bumblebee
XB3 center image can be mapped to the Velodyne HDL32
point cloud using the joint calibration results of the laser
radar and the camera. This mapping process assists in
incorporating semantic information into the low-resolution
32-beam LiDAR system.

Figure 31. Data association and augmentation based on
stereo camera calibration results in section 4.3

From the perspective of data association, SLAM is capable
of linking together various elements such as scenes, objects,
locations, and timestamps during the process of simultaneous
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Figure 32. Data association and augmentation based on
LiDAR camera calibration results in section 4.7

Figure 33. Data association and augmentation based on SLAM
results in section 5

localization and mapping. As shown in Figure 33, when
employing the Bumblebee XB3 center camera for ORB-
SLAM3, image frames are arranged according to their
corresponding time and location. Therefore, for all image
data collected by the Bumblebee camera at a rate of 10Hz,
it can be associated based on the results of SLAM, allowing
for annotations to be inserted between keyframes marked at
a rate of 1Hz. This slightly compromises fidelity but greatly
doubles the number of annotated frames.

The Semantic FLICAR dataset encompasses a signif-
icant number of annotated images, with comprehensive
fine-grained semantic segmentation and 128-beam Ouster
LiDAR ring signal image segmentation. This dataset offers
researchers a rich resource for training, evaluating, and
advancing algorithms and models in various computer vision
tasks, including object recognition, scene segmentation and
understanding, and autonomous aerial work applications.
The impact of the Semantic FLICAR dataset extends to prac-
tical applications as well. The meticulous annotations within
this dataset can contribute to advancements in autonomous
aerial work systems, robotics, and other domains that rely
on precise scene analysis and understanding. By fostering

Figure 34. Motion blur in poor lighting conditions, data form
HF007 and HF008

research in these areas, the Semantic FLICAR dataset plays
a crucial role in the development of safer and more intelligent
AI systems for aerial work tasks.

7 Known Issues
Despite careful design and execution of the data collection

experiments, we are aware of various issues that present
additional challenges in processing and limit the achievable
accuracy when compared to ground truth.

These are the issues that users will need to be aware of:
• Camera overexposure in direct sunlight and insufficient

lighting at night, as shown in Figure 22: In certain conditions,
such as direct sunlight, the camera may experience
overexposure, resulting in washed-out or overly bright
images. Conversely, during nighttime or low-light situations,
the lighting may be inadequate, leading to underexposed
images with limited visibility. Additionally, there might be
the presence of lens flares or halos, which can occur when
strong light sources are present in the frame.

• Motion blur in poor lighting conditions, as shown in
Figure 34: In challenging lighting conditions where the
illumination is insufficient, the camera extends the exposure
time to capture more light. As a result, when there is fast
motion, such as large-scale rotations, motion blur may occur
in the captured images. This motion blur can lead to reduced
image clarity and potentially impact the accuracy of certain
computer vision tasks.

• Attention to timestamps in Ouster and LiVOX LiDAR
rostopics: Please pay attention to the timestamps recorded
within the Ouster and LiVOX LiDAR rostopics. During the
entire experimental process, the availability of GPS signals
cannot be guaranteed at all times. In situations where the
GPS signal is interrupted, the driver programs of these two
LiDAR sensors may record the time elapsed since startup as
timestamps instead of UTC time. To ensure accurate UTC
timestamp synchronization, it is recommended to use the
timestamps provided by the rostopic as a reference, as they
record the computer system time. Both the computers that
record Ouster and LiVOX LiDAR sensor data synchronize
their time using the same server through NTP with others.

• Attention to the accuracy of semantic segmentation label
edges: Please pay attention to the accuracy of the semantic
segmentation labels, particularly at the edges. The semantic
labels in our Semantic FLICAR dataset were generated by
prompting SAM. As a result, the semantic segmentation
labels may not achieve pixel-level accuracy, especially at
the edges of objects. Additionally, the pixel accuracy of
the labels in the Ouster OS0-128 signal images may be
lower compared to the visible light images due to the lower
resolution of the Ouster LIDAR sensor.
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8 Summary and future work

The USTC FLICAR is a unique dataset that focuses on the
task of heavy-duty aerial work, featuring a special aerial
platform, the bucket truck, which allows for greater payload
capacity and stationarity compared to traditional drones.
It is also the most sensor-rich aerial dataset to date, with
a wide range of sensors including seven cameras, four
3D LiDARs, and three IMUs, which covers 360 degrees
of horizontal and vertical views. This dataset is designed
to enable aerial work robots to effectively interact with
complex aerial work environments, with millimeter-level
outdoor ground truth obtained using a laser tracker. It is our
hope that this dataset will serve as a valuable benchmark
for evaluating the performance of various algorithms in
this field, and inspire researchers to design sensor suites
specifically tailored for autonomous aerial work systems.
Moreover, the experimental results on our dataset also
demonstrate that the novel combination of an autonomous
driving sensing kit and bucket truck is a general autonomous
aerial platform with high potential for various aerial work
tasks.

Looking ahead to the future, our goal is to expand
into multiple domains and further advance the practical
application of aerial robotics. One key aspect is to enrich
and refine the semantic annotations based on existing labeled
data, which will enable the aerial robots to have a more
accurate and detailed understanding of the environment and
its objects. Additionally, we plan to incorporate more sensors
and explore new sensor configurations. For instance, our aim
is to include infrared night vision cameras and downward-
facing cameras to enhance the dataset’s capabilities. These
additional features will significantly improve the overall
abilities of the aerial robots. Furthermore, we intend to
continue collecting new data to cover a broader range of
scenarios and environments. This approach allows us to
enhance the robustness and generality of our algorithms
and models. By continuously expanding our dataset, we
can improve the effectiveness and reliability of aerial
robots in various real-world situations. In conclusion, we
firmly believe that the USTC FLICAR dataset represents
an important milestone in making aerial work safer, more
efficient, and more accessible. Through our continuous
efforts, our goal is to push the boundaries of innovation
and contribute to the ongoing progress of aerial robotics
technology.
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